Tag Relevance for Social Image Retrieval in Accordance with Neighbor Voting Algorithm
نویسندگان
چکیده
Social image retrieval is important for exploiting the increasing amounts of amateur-tagged multimedia such as Flickr images. Intuitively, if different persons label similar images using the same tags, these tags are likely to reflect objective aspects of the visual content. Interpreting the relevance of a user-contributed tag with respect to the visual content of an image is an emerging problem in social image retrieval. An algorithm is proposed that scalably and reliably learns tag relevance by accumulating votes from visually similar neighbours. Treated as tag frequency, learned tag relevance is seamlessly embedded into current tagbased social image retrieval paradigms. Preliminary experiments on two thousand Flickr images demonstrate the potential of the proposed algorithm. The tag relevance learning algorithm substantially improves upon baselines for all the experiments. The results suggest that the proposed algorithm is promising for real-world applications.
منابع مشابه
Fuzzy Neighbor Voting for Automatic Image Annotation
With quick development of digital images and the availability of imaging tools, massive amounts of images are created. Therefore, efficient management and suitable retrieval, especially by computers, is one of themost challenging fields in image processing. Automatic image annotation (AIA) or refers to attaching words, keywords or comments to an image or to a selected part of it. In this paper,...
متن کاملTags Re-ranking Using Multi-level Features in Automatic Image Annotation
Automatic image annotation is a process in which computer systems automatically assign the textual tags related with visual content to a query image. In most cases, inappropriate tags generated by the users as well as the images without any tags among the challenges available in this field have a negative effect on the query's result. In this paper, a new method is presented for automatic image...
متن کاملTagging Social Images by Parallel Tag Graph Partitioning
In recent years, we have witnessed a great success of social community websites. Large-scale social images with rich metadata are increasingly available on the Web. In this paper, we focus on efficiently tagging social images by partitioning the large-scale tag graph in parallel. Vertices of the tag graph are constructed by the candidate tags which are extended from initial tags. Initial tags a...
متن کاملCorrelation consistency constrained probabilistic matrix factorization for social tag refinement
With the permeation of Web 2.0, large-scale user contributed images with tags are easily available on social websites. However, the noisy or incomplete correspondence between images and tags prohibit us from precise image retrieval and effective management. To tackle this, we propose a social tag refinement method, named as Correlation Consistency constrained Probabilistic Matrix Factorization ...
متن کاملDocument Image Retrieval Based on Keyword Spotting Using Relevance Feedback
Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...
متن کامل